Comparison of Established and New, Preliminarily Proposed ASAS Cut-Offs for Inflammatory MRI Lesions in the Sacroiliac Joints in Axial Spondyloarthritis and Implications for Recruitment in Clinical Studies

Xenofon Baraliakos,¹ Pedro M. Machado,²⁻⁴ Lars Bauer,⁵ Bengt Hoepken,⁵ Mindy Kim,⁶ Thomas Kumke,⁵ Rachel Tham,⁷ Martin Rudwaleit⁸

MRI definitions

ASDAS disease states stratified by both

Patients with r-axSpA

Existing Definition MRI+ (n=195) ASDAS-ID ASDAS-LDA ASDAS-HDA ASDAS-VHDA New Definition MRI+ (n=177) ASDAS-ID ASDAS-LDA ASDAS-HDA ASDAS-VHDA ASDAS-VHDA

Patients with nr-axSpA

Existing Definition MRI+ (n=191) ASDAS-ID ASDAS-LDA ASDAS-HDA ASDAS-VHDA

New Definition MRI+ (n=156) ASDAS-ID ASDAS-LDA ASDAS-HDA ASDAS-VHDA

ASDAS-VHDA

Discordant Group (n=18)

✓ ASDAS-ID

✓ ASDAS-LDA

✓ ASDAS-HDA

✓ ASDAS-HDA

existing, and newly proposed, ASAS SIJ

Objective

To investigate the effect of applying a recently proposed Assessment of SpondyloArthritis international Society positive MRI definition on outcomes in patients with axial spondyloarthritis.

Background

- In an MRI scan of the sacroiliac joint (SIJ), inflammatory and structural lesions typical of axial spondyloarthritis (axSpA) are scored using 48 data point locations (**Figure 1**).
- The Assessment of SpondyloArthritis international Society (ASAS) has
 recently proposed a preliminary, more stringent, data-driven definition
 requiring the presence of bone marrow edema (BME) in either four
 or more quadrants in the same slice, or in the same quadrant in three
 consecutive slices (Figure 1).¹

Methods

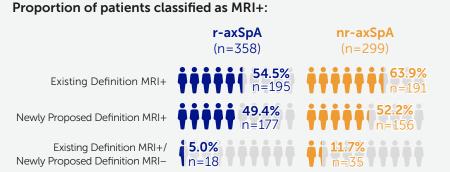
- C-OPTIMISE (NCT02505542) enrolled 736 patients with active axSpA who received 400 mg certolizumab pegol (CZP) at Weeks 0, 2, and 4, then 200 mg CZP every two weeks to Week 48.² Baseline MRI SIJ scans were scored by two central readers.
- We assessed clinical outcomes of patients receiving CZP in C-OPTIMISE who were MRI-positive (MRI+) or negative (MRI-) according to both the existing and newly proposed definitions, as well as those who were MRI+ by the existing definition but MRI- by the newly proposed definition (discordant group).
- Proportions of patients achieving ASAS ≥40% improvement (ASAS40)
 response are reported using non-responder imputation. BASDAI
 change from baseline and ASDAS disease states are reported using last
 observation carried forward.

Results

MRI Classification

- Baseline MRI data were available for 657/736 (89.3%) patients, 358/657 (54.5%) of whom had radiographic (r)-axSpA and 299/657 (45.5%) non-radiographic (nr)-axSpA.
- 386/657 patients (58.8%) were classified as MRI+ according to the
 existing definition compared with 333/657 patients (50.7%) using the
 newly proposed definition; the discordant group comprised 35/299
 patients (11.7%) with nr-axSpA and 18/358 (5.0%) with r-axSpA (Table 1).

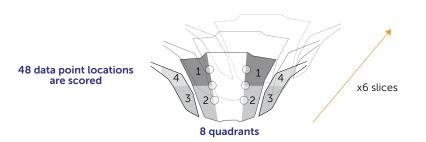
Clinical Outcomes


- A numerically higher proportion of patients fulfilling the newly proposed MRI+ definition achieved ASAS40 at Week 48 versus those fulfilling the existing MRI+ definition (Figure 2, Table 2).
- Similar results were observed for mean BASDAI, with patients in the discordant group responding similarly to those originally classified as MRI– (Figure 2, Table 2).
- At Week 48, a lower proportion of patients in the discordant group achieved ASDAS inactive disease versus those classified as MRI+ according to either the existing or newly proposed definitions; differences between subgroups were more notable among patients with nr-axSpA than with r-axSpA (Figure 3, Table 2).

Conclusions

In this post hoc analysis of the C-OPTIMISE study, 11.7% fewer patients with nr-axSpA would have been classified as MRI+ at baseline using the preliminary proposed definition versus the existing definition.

Applying the preliminary definition could lead to fewer false-positive patients being recruited and improve the accuracy with which MRI+ patients are identified; the preliminary proposed definition should be applied in future studies to confirm this finding.



Proportion of patients achieving ASDAS low or inactive disease (ASDAS <2.1) at Week 48:

Existing Definition MRI+	82.6%	80.6%	
vly Proposed Definition MRI+	83.0%	82.7%	
Existing Definition MRI+/ vly Proposed Definition MRI-	77.8%	71.5%	

Guantitative component of ASAS definitions of a positive MRI for inflammatory and structural lesions typical of axSpA

Existing MRI+ Definition^{3,4}

BME in either:

• At least two quadrants in the same slice

• The same quadrant in two

consecutive slices

Newly Proposed MRI+ Definition¹
BME in either:

• At least four quadrants in the same slice
or

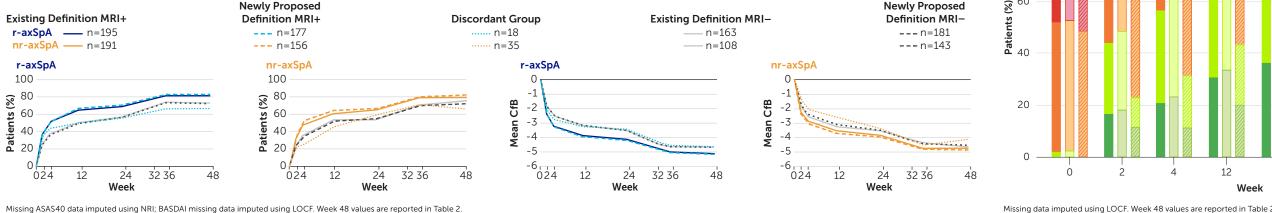
• The same quadrant in three consecutive slices

nr-axSpA

An SIJ MRI comprises six slices, each with two sides containing four quadrants (1. upper sacrum; 2. lower sacrum; 3. lower ilium; 4. upper ilium) giving a total of 48 data point locations. Scoring for identifying active lesions is binary (0 or 1 depending on presence or absence of bone marrow oedema).

Table 1 Baseline demographics and disease characteristics

Baseline characteristic, mean (SD), unless otherwise stated	Existing Definition MRI+ n=386		Newly Proposed Definition MRI+ n=333		Discordant Group n=53		Existing Definition MRI- n=271		Newly Proposed Definition MRI- n=324	
	r-axSpA n=195	nr-axSpA n=191	r-axSpA n=177	nr-axSpA n=156	r-axSpA n=18	nr-axSpA n=35	r-axSpA n=163	nr-axSpA n=108	r-axSpA n=181	nr-axSpA n=143
Age, years , mean (SD)	32.7 (6.8)	31.9 (7.0)	32.7 (6.9)	31.1 (6.5)	32.4 (5.5)	35.4 (8.0)	34.6 (6.8)	32.7 (7.2)	34.4 (6.7)	33.3 (7.4)
Sex, male, n (%)	154 (79.0)	123 (64.4)	138 (78.0)	109 (69.9)	16 (88.9)	14 (40.0)	130 (79.8)	56 (51.9)	146 (80.7)	70 (49.0)
CRP, mg/L, mean (SD)	17.3 (17.7)	11.0 (18.5)	17.1 (17.1)	11.5 (19.0)	19.6 (23.3)	8.6 (15.9)	16.3 (20.3)	12.4 (17.3)	16.6 (20.6)	11.5 (17.0)
HLA-B27, positive, n (%)	169 (86.7)	148 (77.5)	153 (86.4)	127 (81.4)	16 (88.9)	21 (60.0)	147 (90.2)	83 (76.9)	163 (90.1)	104 (72.7)
Symptom duration , years, mean (SD)	3.5 (2.1)	2.9 (1.6)	3.6 (2.2)	2.9 (1.6)	3.2 (1.3)	3.2 (1.8)	3.7 (2.6)	3.0 (1.8)	3.7 (2.5)	3.0 (1.8)
BASDAI, mean (SD)	6.8 (1.4)	6.6 (1.4)	6.8 (1.4)	6.5 (1.4)	6.2 (1.7)	6.9 (1.4)	6.7 (1.4)	6.8 (1.3)	6.6 (1.4)	6.8 (1.3)
ASDAS disease state, n (%)	•		•						•	
ID	0	0	0	0	0	0	0	0	0	0
LDA	2 (1.0)	4 (2.1)	1 (0.6)	4 (2.6)	1 (5.6)	0	3 (1.8)	1 (0.9)	4 (2.2)	1 (0.7)
HDA	52 (26.7)	95 (49.7)	45 (25.4)	78 (50.0)	7 (38.9)	17 (48.6)	67 (41.1)	46 (42.6)	74 (40.9)	63 (44.1)
vHDA	141 (72.3)	92 (48.2)	131 (74.0)	74 (47.4)	10 (55.6)	18 (51.4)	93 (57.1)	61 (56.5)	103 (56.9)	79 (55.2)


ID: ASDAS <1.3; LDA: ASDAS ≥1.3-<2.1; HDA: ASDAS ≥2.1-≤3.5; vHDA: ASDAS >3.5.

ID: ASDAS <1.3; LDA: ASDAS ≥1.3-<2.1; HDA: ASDAS ≥2.1-≤3.5; vHDA: ASDAS >3.5

Table 2 Clinical outcomes at Week 48

Existing Definition MRI+ n=386		Newly Proposed Definition MRI+ n=333		Discordant Group n=53		Existing Definition MRI- n=271		Newly Proposed Definition MRI- n=324	
r-axSpA n=195	nr-axSpA n=191	r-axSpA n=177	nr-axSpA n=156	r-axSpA n=18	nr-axSpA n=35	r-axSpA n=163	nr-axSpA n=108	r-axSpA n=181	nr-axSpA n=143
-									
158 (81.0)	151 (79.1)	146 (82.5)	128 (82.1)	12 (66.7)	23 (65.7)	119 (73.0)	81 (75.0)	131 (72.4)	104 (72.7)
-5.1 (2.3)	-4.7 (2.5)	-5.2 (2.2)	-4.9 (2.4)	-4.7 (2.8)	-4.2 (2.8)	-4.7 (2.5)	-4.7 (2.4)	-4.7 (2.5)	-4.5 (2.5)
•									
118 (60.5)	112 (58.6)	108 (61.0)	97 (62.2)	10 (55.6)	15 (42.9)	87 (53.4)	55 (50.9)	97 (53.6)	70 (49.0)
43 (22.1)	42 (22.0)	39 (22.0)	32 (20.5)	4 (22.2)	10 (28.6)	32 (19.6)	25 (23.1)	36 (19.9)	35 (24.5)
22 (11.3)	28 (14.7)	19 (10.7)	23 (14.7)	3 (16.7)	5 (14.3)	39 (23.9)	26 (24.1)	42 (23.2)	31 (21.7)
12 (6.2)	9 (4.7)	11 (6.2)	4 (2.6)	1 (5.6)	5 (14.3)	5 (3.1)	2 (1.9)	6 (3.3)	7 (4.9)
	r-axSpA n=195 158 (81.0) -5.1 (2.3) 118 (60.5) 43 (22.1) 22 (11.3)	n=386 r-axSpA nr-axSpA n=191 158 (81.0) 151 (79.1) -5.1 (2.3) -4.7 (2.5) 118 (60.5) 112 (58.6) 43 (22.1) 42 (22.0) 22 (11.3) 28 (14.7)	n=386 MRI+ r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 158 (81.0) 151 (79.1) 146 (82.5) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) 118 (60.5) 112 (58.6) 108 (61.0) 43 (22.1) 42 (22.0) 39 (22.0) 22 (11.3) 28 (14.7) 19 (10.7)	n=386 MRI+ n=333 r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 nr-axSpA n=156 158 (81.0) 151 (79.1) 146 (82.5) 128 (82.1) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) -4.9 (2.4) 118 (60.5) 112 (58.6) 108 (61.0) 97 (62.2) 43 (22.1) 42 (22.0) 39 (22.0) 32 (20.5) 22 (11.3) 28 (14.7) 19 (10.7) 23 (14.7)	n=386 MRI+ n=333 n= r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 nr-axSpA n=156 r-axSpA n=18 158 (81.0) 151 (79.1) 146 (82.5) 128 (82.1) 12 (66.7) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) -4.9 (2.4) -4.7 (2.8) 118 (60.5) 112 (58.6) 108 (61.0) 97 (62.2) 10 (55.6) 43 (22.1) 42 (22.0) 39 (22.0) 32 (20.5) 4 (22.2) 22 (11.3) 28 (14.7) 19 (10.7) 23 (14.7) 3 (16.7)	n=386 MRI+ n=333 n=53 r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 nr-axSpA n=156 r-axSpA n=18 nr-axSpA n=35 158 (81.0) 151 (79.1) 146 (82.5) 128 (82.1) 12 (66.7) 23 (65.7) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) -4.9 (2.4) -4.7 (2.8) -4.2 (2.8) 118 (60.5) 112 (58.6) 108 (61.0) 97 (62.2) 10 (55.6) 15 (42.9) 43 (22.1) 42 (22.0) 39 (22.0) 32 (20.5) 4 (22.2) 10 (28.6) 22 (11.3) 28 (14.7) 19 (10.7) 23 (14.7) 3 (16.7) 5 (14.3)	n=386 MRI+ n=333 n=53 n=1 r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 nr-axSpA n=156 r-axSpA n=18 nr-axSpA n=35 r-axSpA n=163 158 (81.0) 151 (79.1) 146 (82.5) 128 (82.1) 12 (66.7) 23 (65.7) 119 (73.0) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) -4.9 (2.4) -4.7 (2.8) -4.2 (2.8) -4.7 (2.5) 118 (60.5) 112 (58.6) 108 (61.0) 97 (62.2) 10 (55.6) 15 (42.9) 87 (53.4) 43 (22.1) 42 (22.0) 39 (22.0) 32 (20.5) 4 (22.2) 10 (28.6) 32 (19.6) 22 (11.3) 28 (14.7) 19 (10.7) 23 (14.7) 3 (16.7) 5 (14.3) 39 (23.9)	n=386 MRI+ n=333 n=53 n=271 r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 nr-axSpA n=156 r-axSpA n=18 nr-axSpA n=35 r-axSpA n=163 nr-axSpA n=108 158 (81.0) 151 (79.1) 146 (82.5) 128 (82.1) 12 (66.7) 23 (65.7) 119 (73.0) 81 (75.0) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) -4.9 (2.4) -4.7 (2.8) -4.2 (2.8) -4.7 (2.5) -4.7 (2.4) 118 (60.5) 112 (58.6) 108 (61.0) 97 (62.2) 10 (55.6) 15 (42.9) 87 (53.4) 55 (50.9) 43 (22.1) 42 (22.0) 39 (22.0) 32 (20.5) 4 (22.2) 10 (28.6) 32 (19.6) 25 (23.1) 22 (11.3) 28 (14.7) 19 (10.7) 23 (14.7) 3 (16.7) 5 (14.3) 39 (23.9) 26 (24.1)	n=386 MRI+ n=333 n=53 n=271 MRI- r-axSpA n=195 nr-axSpA n=191 r-axSpA n=177 nr-axSpA n=156 r-axSpA n=18 nr-axSpA n=35 r-axSpA n=163 nr-axSpA n=108 r-axSpA n=181 158 (81.0) 151 (79.1) 146 (82.5) 128 (82.1) 12 (66.7) 23 (65.7) 119 (73.0) 81 (75.0) 131 (72.4) -5.1 (2.3) -4.7 (2.5) -5.2 (2.2) -4.9 (2.4) -4.7 (2.8) -4.2 (2.8) -4.7 (2.5) -4.7 (2.4) -4.7 (2.5) 118 (60.5) 112 (58.6) 108 (61.0) 97 (62.2) 10 (55.6) 15 (42.9) 87 (53.4) 55 (50.9) 97 (53.6) 43 (22.1) 42 (22.0) 39 (22.0) 32 (20.5) 4 (22.2) 10 (28.6) 32 (19.6) 25 (23.1) 36 (19.9) 22 (11.3) 28 (14.7) 19 (10.7) 23 (14.7) 3 (16.7) 5 (14.3) 39 (23.9) 26 (24.1) 42 (23.2)

Alissing ASAS40 data imputed using NRI; BASDAI missing data imputed using LOCF. Week 48 values are reported in Table 2.

ASAS: Assessment of SpondyloArthritis international Society; ASAS40: ASAS \geq 40% improvement; ASDAS: Ankylosing Spondylitis Disease Activity; HLA-B27: human leukocyte antigen B27; ID: inactive disease; LDA: low disease activity; LOCF: last observation carried forward; MRI: magnetic resonance imaging, NRI: non-responder imputation; nr-axSpA: non-radiographic axial spondyloarthritis; r-axSpA: radiographic axial spondyloarthritis; r-axSpA: radio

Institutions: ¹Rheumazentrum Ruhrgebiet Herne, Ruhr-University Bochum, Bochum, Bochum, Bochum, Germany; ²Department of Rheumatology, University College London Hospitals NHS Foundation Trust, London, UK; ⁵UCB Pharma, Monheim am Rhein, Germany; °UCB Pharma, Smyrna, Georgia, USA; 7UCB Pharma, Slough, UK; °University of Bielefeld, Klinikum Bielefeld, Bielefeld, Germany.

References: ¹Maksymowych W.P, Rheumatology 2021;60(10):4778–89; ²Landewé RB, Ann Rheum Dis 2020;79(7):920–8; ³Rudwaleit M, Ann Rheum Dis 2016:75:1958–63. Author Disclosures: XB: Speaker, instructor and consultancy fees from AbbVie, Bristol Myers Squibb, Celgene, Eli Lilly, Galapagos, GSK, Janssen, MSD, Novartis, Orphazyme, Pfizer and UCB Pharma. Pfizer, Roche and UCB Pharma. RT: Veramed statistical consultant for UCB Pharma. RT: Veramed statistical consultant for UCB Pharma. Author contributions: Substantial contributions: Substantial contributions to study conception/design or acquisition/analysis/interpretation of data: XB, PMM, LB, BH, MK, TK, RT, MR; drafting of the publication: XB, PMM, LB, BH, MK, TK, RT, MR, the patients and their caregivers in addition to the investigators and their teams who contributed to this study. The authors acknowledge Simone E. Auteri MSc EMS PhD, UCB Pharma, for publication coordination, and Jane Spingardi, DPhil, Costello Medical, for medical writing and editorial assistance, and the Costello Medical Creative Team for design support. This study was funded by UCB Pharma.

To receive a copy of this po scan the QR code or visit: https://ucbposters.com/ ?PosterID=POS0679

ster ID: POS0679

