Effect of zilucoplan on fatigue in generalized myasthenia gravis in the Phase 3 RAISE and RAISE-XT studies

AANEM 2023, Phoenix, AZ, USA; November 1–4, 2023

Introduction

- Fatigue has a marked negative impact on the day-to-day lives of patients with MG, and is strongly associated with a reduced quality of life¹
- Zilucoplan, a complement C5 inhibitor, showed clinically meaningful and statistically significant improvements in MG-specific outcomes in patients with AChR Ab+ gMG in Phase 2² and Phase 3 (RAISE)³ randomized, double-blind, placebo-controlled studies
- In RAISE, mean change from baseline to Week 12 in MG-ADL score was significantly improved with zilucoplan compared to placebo (LSM difference: -2.09 [-3.24, -0.95]; p=0.0004);³ further treatment with zilucoplan in RAISE-XT demonstrated continued improvements that were sustained through to Week 60
- Statistically significant improvements in the zilucoplan group versus placebo were observed in fatigue at Week 12 in RAISE³
- Long-term data from RAISE-XT will enhance our understanding of the effect of zilucoplan on fatigue in patients with gMG as measured by the Neuro-QoL Short Form fatigue scale
- Neuro-QoL Short Form fatigue raw scores can be converted into T-scores, which allow for clinically meaningful thresholds and severity thresholds to be applied^{4,5}

Methods

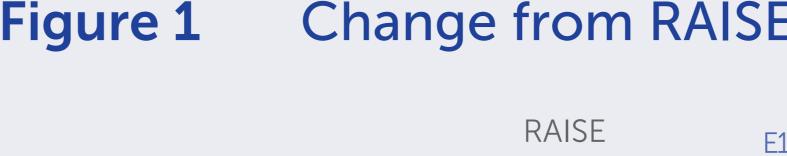
- In RAISE (NCT04115293), adults with AChR Ab+ gMG (MGFA Disease Class II–IV) were randomized 1:1 to receive daily subcutaneous selfadministered injections of zilucoplan 0.3 mg/kg or placebo for 12 weeks
- Patients who completed RAISE, or the qualifying Phase 2 study (NCT03315130), were eligible to enroll in RAISE-XT (NCT04225871), an ongoing, Phase 3, multicenter, OLE study of zilucoplan 0.3 mg/kg (interim data cut-off September 8, 2022)
- The primary outcome of RAISE-XT was incidence of TEAEs
- In this *post-hoc* analysis of RAISE and RAISE-XT, we report:
- CFB in Neuro-QoL Short Form fatigue T-scores over time
- Proportion of Neuro-QoL Short Form fatigue T-score responders compared with placebo at Week 12 in RAISE
- Fatigue severity transition from RAISE baseline to Week 60
- Neuro-QoL Short Form fatigue data were not collected during the Phase 2 study

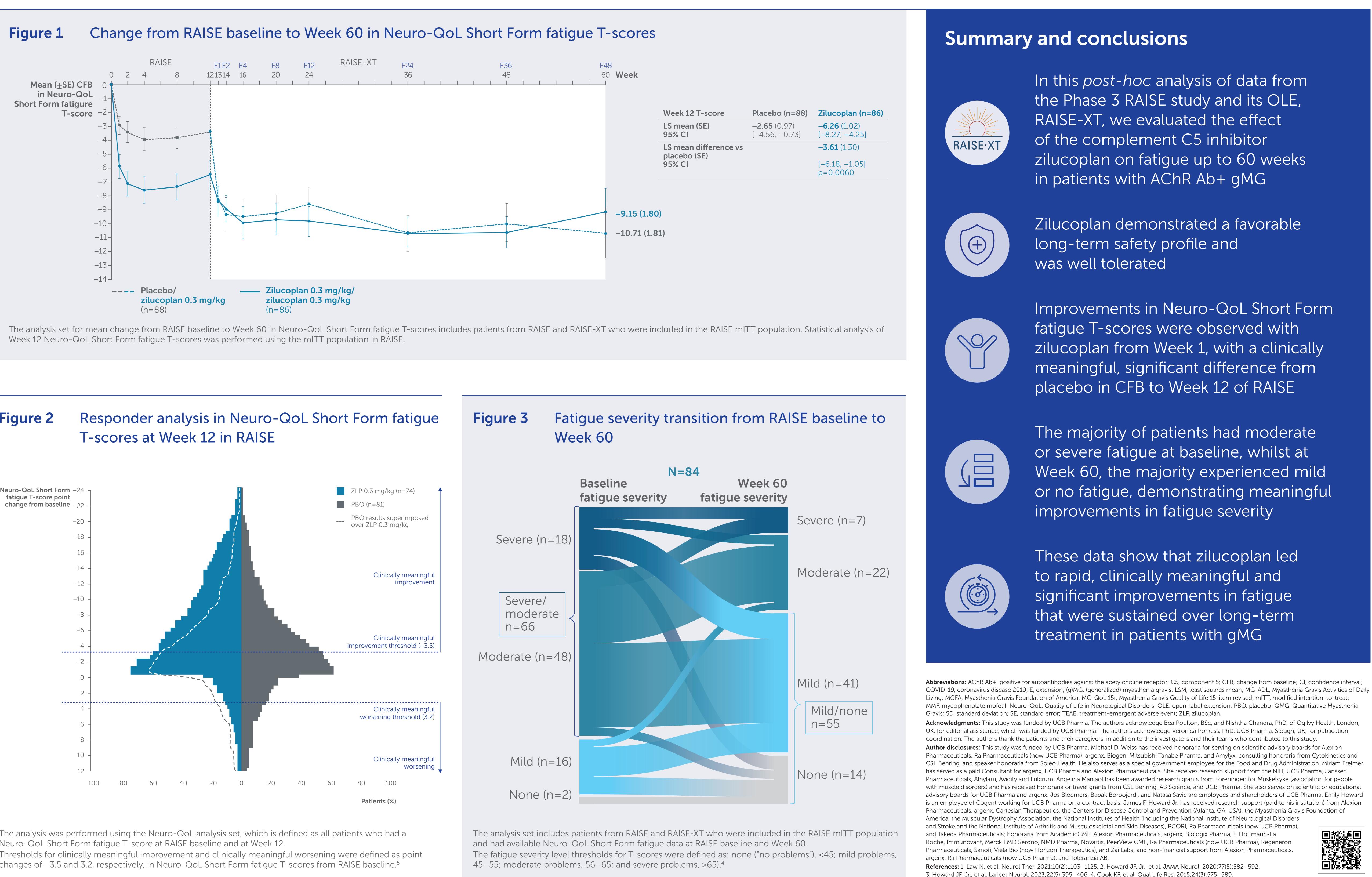
Results

- In RAISE, 174 patients were randomized to receive zilucoplan 0.3 mg/kg (n=86) or placebo (n=88)
- After Week 12, all patients who completed RAISE (166 [95.4%]) entered RAISE-XT to receive zilucoplan 0.3 mg/kg
- Patient demographics and baseline disease characteristics are presented in **Table 1**
- In the overall RAISE-XT population (N=200), TEAEs occurred in 188 (94.0%) patients; the most common TEAEs were worsening of MG (n=52 [26.0%]) and COVID-19 (n=49 [24.5%])
- Serious TEAEs occurred in 64 (32.0%) patients

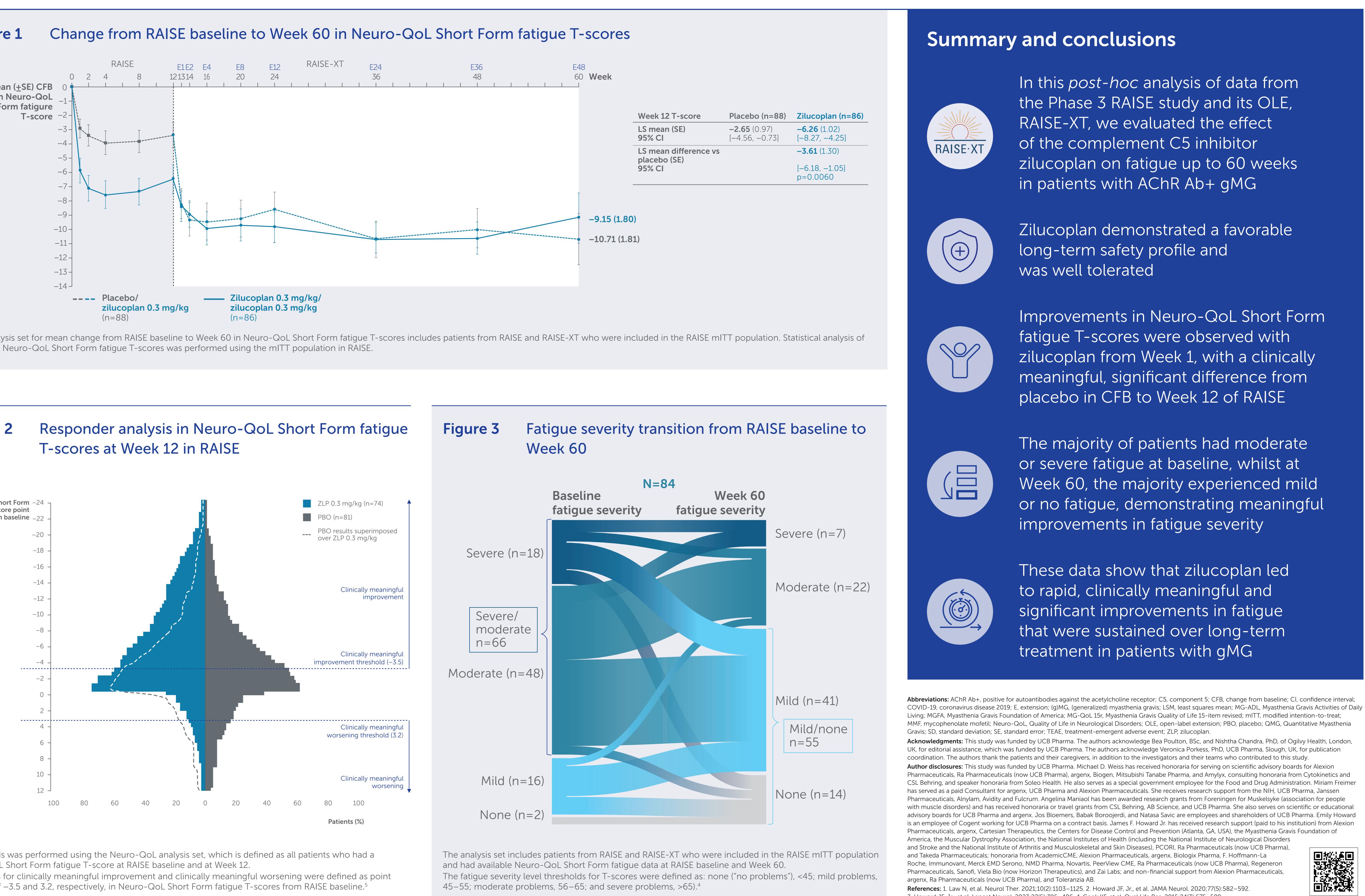
- Mean Neuro-QoL Short Form fatigue T-scores improved from RAISE baseline to Week 12 in those receiving zilucoplan, with an LSM difference (SE) of -3.61 (1.30) from placebo (p=0.0060) (**Figure 1**)
- This difference is considered clinically meaningful as it surpasses the established within-patient change threshold of -3.5^{5}
- At Week 12 of RAISE, a higher proportion of patients receiving zilucoplan had clinically meaningful reductions in fatigue baseline versus placebo (**Figure 2**)
- During RAISE-XT, rapid improvements were observed within 1 week in patients who switched from placebo to zilucoplan (placebo-switch group; **Figure 1**)
- T-scores improved further for both the placebo-switch and zilucoplan groups and were sustained through to Week 60
- There were significant positive correlations between Neuro-QoL Short Form fatigue scale T-scores and MG-ADL, QMG and MG-QoL 15r scores at double-blind study baseline, Week 12 and Week 60 (data not shown)
- At RAISE baseline, the fatigue severity of most patients was moderate or severe (n=66 [78.6%]), whilst at Week 60, most patients had mild or no fatigue (n=55 [65.5%]; **Figure 3**)
- These findings were consistent across the placebo-switch and zilucoplan groups

Table 1 Patient demographics and baseline disease characteristics in RAISE


MGFA	
Disease	
Class,	
n (%)	


Duratior

Prior gMG	
therapies	
(safety set),	
n (%)	Cyc


RAISE mITT population, which included all randomized patients who received at least one dose of the study drug and had at least one post-dosing MG-ADL score. Safety set included all patients who received at least one dose of zilucoplan in RAISE.

	Placebo (n=88)	Zilucoplan 0.3 mg/kg (n=86)	Total (N=174)
Age, years, mean (SD)	53.3 (15.7)	52.6 (14.6)	53.0 (15.1)
Sex, male, n (%)	41 (46.6)	34 (39.5)	75 (43.1)
	27 (30.7)	22 (25.6)	49 (28.2)
	57 (64.8)	60 (69.8)	117 (67.2)
IV	4 (4.5)	4 (4.7)	8 (4.6)
MG-ADL, mean (SD)	10.9 (3.4)	10.3 (2.5)	10.6 (3.0)
QMG score, mean (SD)	19.4 (4.5)	18.7 (3.6)	19.1 (4.1)
Prior thymectomy, n (%)	37 (42.0)	45 (52.3)	82 (47.1)
Prior MG crisis, n (%)	29 (33.0)	28 (32.6)	57 (32.8)
on of disease, years, mean (SD)	9.0 (10.4)	9.3 (9.5)	9.2 (9.9)
Age at onset, years, mean (SD)	44.0 (18.7)	43.5 (17.4)	43.8 (18.0)
Cholinesterase inhibitors	84 (95.5)	84 (97.7)	168 (96.6)
Corticosteroids	74 (84.1)	77 (89.5)	151 (86.8)
Azathioprine, MMF	54 (61.4)	49 (57.0)	103 (59.2)
closporin, cyclophosphamide, methotrexate, tacrolimus, rituximab	31 (35.2)	26 (30.2)	57 (32.8)

Figure 2

The analysis was performed using the Neuro-QoL analysis set, which is defined as all patients who had a Neuro-QoL Short Form fatigue T-score at RAISE baseline and at Week 12. Thresholds for clinically meaningful improvement and clinically meaningful worsening were defined as point changes of -3.5 and 3.2, respectively, in Neuro-QoL Short Form fatigue T-scores from RAISE baseline.⁵

Michael D. Weiss¹, Miriam Freimer², Angelina Maniaol³, Jos Bloemers⁴, Babak Boroojerdi⁵, Emily Howard⁶, Natasa Savic⁷, James F. Howard Jr.⁸ on behalf of the RAISE and RAISE-XT study team

¹Department of Neurology, University of Washington Medical Center, Seattle, WA, USA; ²Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA; ³Department of Neurology, Oslo University Hospital, Oslo, Norway; ⁴UCB Pharma, Brussels, Belgium; ⁵UCB Pharma, Monheim, Germany; ⁶UCB Pharma, Slough, UK and Cogent Skills, Warrington, UK; ⁷UCB Pharma, Bulle, Switzerland; ⁸Department of Neurology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA

5. Cook KF, et al. Qual Life Res. 2017;26(11):2961–2971.

Poster **285**

Please use this QR code to

download a PDF of the poster