Survival analyses in patients with thymidine kinase 2 deficiency aged ≤12 years at symptom onset who received pyrimidine nucleos(t)ide therapy

16th European Paediatric Neurology Society (EPNS) Congress; Munich, Germany; 8-12 July 2025

Caterina Garone^{1,2*}, Cristina Domínguez-González^{3,45}, Richard Haas^{6,7}, Carmen Paradas^{8,9}, Fernando Scaglia^{10,11,12}, Cynthia Beller^{1,3}, Carl Chiang^{1,3}, Anny-Odile Colson^{1,4}, Susan VanMeter^{1,3}, Michio Hirano^{1,5} *Department of Medical and Surgical Sciences. Alma Mater Studionum. University of Bologna, Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University of Bologna, Italy: *Scientific Institute for Research. Hospital University Research Institute Hospital 12 de Octubre (imas12), Madrid, Spain, "Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain, "Oppartment, of Neurosciences, University of California, San Diego, CA, USA; "Reduy Children's Hospital, San Diego, CA, USA; "Neuromuscular Disorders Unit, Neurology Department, Instituto de Biomedicina de Sevilla (IBIS) Hospital Universitario Virgen del Rocio, Conseio Superior de Investigaciones Científicas, University of Seville, Seville "Baylor College of Medicine (BCM)—Chinese University of Hong Kong (CUHK) Joint Centre for Medical Genetics, Prince of Wales Hospital, Shalin, Hong Kong SAR, China, "UCB, Morrisville, NC, USA, "UCB, Colombes, France," The H. Houston Merritt Center for Neuroinascular and Mitochondrial Disorders, Department of Neuroinascular and Ne

Please use this QR code to acces load a PDF of this p

Introduction

 Thymidine kinase 2 deficiency (TK2d) is an ultra-rare, autosomal recessive. mitochondrial disease manifesting as progressive, life-threatening

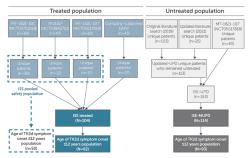
*Presenting author: Caterina Garone (caterina.garone@unibo.it)

- Pathogenic variants of the thymidine kinase 2 gene (TK2) result in mitochondrial DNA (mtDNA) depletion and/or multiple mtDNA deletions,3 leading to proximal, bulbar and axial muscle weakness14
- TK2d frequently causes premature death, often from respiratory failure^{1,2} There are no approved treatments for TK2d, with current management across the world focused on supportive care, which does not change the progressive disease trajectory
- Doxecitine and doxribtimine is a pyrimidine nucleoside therapy containing deoxycytidine (dC) and deoxythymidine (dT) currently in development for
- Doxecitine and doxribtimine targets the underlying disease pathology of TK2d by utilizing residual thymidine kinase 2 activity in the mitochondria, as well as thymidine kinase 1 and dC kinase in the cytosol, to increase mtDNA quantity that supports increased energy metabolism in cells⁶⁻⁹
- There is a wide spectrum of age of TK2d symptom onset. Generally, patients with earlier symptom onset have more rapid disease progression^{1,2}
- Using a threshold of <12 years versus >12 years for the age of symptom onset is largely considered a clinically meaningful approach to disease categorization1,2

• To assess survival and safety in paediatric and adult patients with an age of TK2d symptom onset ≤12 years who received pyrimidine nucleos(t)ide therapy

Methods

Pooled analysis


- The efficacy and safety of pyrimidine nucleos(t)ide therapy were assessed in the Integrated Summary of Efficacy (ISE) and Safety (ISS)
- Data from patients treated with pyrimidine nucleos(t)ides (ISE treated) group) were pooled from retrospective (MT-1621-101 [NCT03701568], MT-1621-107 [NCT05017818]) and prospective (TK0102 [NCT03845712]) studies and company-supported expanded access programs (Figure 1)
- Data from untreated patients (ISE-modified Untreated Patient Database [MUPD]) were pooled from literature reviews and a retrospective chart
- review study (MT-1621-107; Figure 1) • The ISS pooled safety population included patients from MT-1621-101,
- TK0102 and MT-1621-107 Subgroups were stratified by age of TK2d symptom onset categories; here, we report data from patients with an age of symptom onset ≤12 years

Patient population

- Inclusion and exclusion criteria were specific to each source study
- The main eligibility criteria for treated patients were confirmed biallelic pathogenic TK2 variants, absence of other genetic disease or polygenic disease, and treatment with nucleos(t)ides for TK2d (non-good manufacturing practice [GMP]-grade deoxycytidine monophosphate/ deoxythymidine monophosphate, non-GMP-grade dC/dT or doxecitine and doxribtimine [GMP-grade dC/dT])
- Available medical records, or at a minimum information pertaining to survival, were required for retrospective studies
- · Untreated patients required individual-level patient data and genetic confirmation of biallelic pathogenic TK2 variants

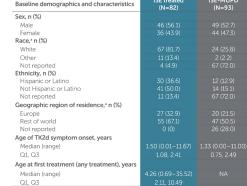
- The primary ISE outcome was survival, defined as time to death from TK2d symptom onset and from treatment start
- Functional outcomes were also assessed (poster 368)
- Safety outcomes were assessed in the ISS pooled safety population (Figure 1)
- Some safety outcomes were not collected in MT-1621-107

Figure 1. Study analysis populations

Data cutoff date: 15 March 2024, *Data cutoff date: 1 March 2024, *Individuals who participated in multiple studies are only counted

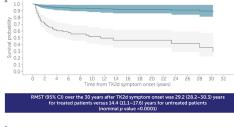
EAPs, expanded access programs; ISE, integrated Summary of Efficacy; ISS, integrated Summary of Safety; MUPD, modified UPD; TK2d, thymidine kinase 2 deficiency; UPD, Untreated Patient Database.

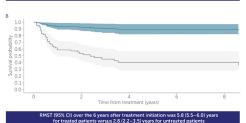
- The primary analysis assessed survival for pair data from the ISE treated and ISE-MUPD groups matched using the 50th-percentile matching algorithm
- Matched pairs from the same age-of-TK2d-symptom-onset group were selected after sorting untreated patients based on survival time, and treated patients based on treatment time
- Cox proportional hazard models, with and without age of TK2d symptom onset as covariate, and marginal Cox models, were utilized to
- Restricted mean survival time (RMST) analyses were used to summarize improvement in survival time with treatment over a prespecified number of years (30 years for RMST analyses after TK2d symptom onset; 6 years for RMST analyses after treatment start)


Results

Patient baseline characteristics and demographics

- In total, 175 patients with age of TK2d symptom onset ≤12 years were included in the ISE analysis (ISE treated, n=82; ISE-MUPD, n=93; Table 1)
- Most patients in the ISE treated group were White (81.7%), 32.9% resided in Europe and 67.1% were from the rest of the world, with more male (56.1%) than female (43.9%) patients
- Most patients had an age of symptom onset <2 years (ISE treated, 56/82) [68.3%]; ISE-MUPD, 69/93 [74.2%])
- Median (quartile [Q]1, Q3) age of symptom onset was 1.50 (1.08, 2.41) years and 1.33 (0.75, 2.49) years in the ISE treated and ISE-MUPD groups, respectively
- In the ISE treated group, median (Q1, Q3) age at first treatment was 4.26 (2.11, 10.49) years and duration of treatment was 54.8 (15.2, 78.4) months


- There were three deaths (3.7%) in the ISE treated group and 53 deaths (57.0%) in the ISE-MUPD group, with median (Q1, Q3) age at death of 1.11 (0.94, 31.77) years and 2.64 (1.58, 4.00) years, respectively.
- The risk of death was reduced with treatment by 92-94% (hazard ratio [HR] = 0.06-0.08; p<0.0001) in the time from TK2d symptom onset and by 87-95%(HR = 0.05-0.13; p<0.0001) in the time from treatment initiation (HR ranges resulting from proportional hazard and marginal Cox models; Figure 2, Table 2)
- RMST estimates were increased for treated versus untreated patients


Table 1. Baseline demographics and characteristics of patients with age of TK2d symptom onset ≤12 years

*Owing to the ultra-rare nature of TK2d and the small number of patients, some details relating to race and geographic region of E. Integrated Summary of Efficacy: MUPD, modified Untreated Patient Database: NA, not available: Q. quartile

Figure 2. Direct adjustment survival curves and RMST estimates from (A) symptom onset and (B) treatment start for 50th-percentile matched-pairs of patients from the ISE treated and ISE-MUPD groups with age of TK2d symptom

Direct adjustment survival curves were estimated using a Cox marginal model with age of TK2d symptom onset as strata variable. RMSTs were estimated from Kaplan-Meier analyses; nominal p values are not multiplicity adjusted.

Ct, confidence interval: ISE, Integrated Summary of Efficacy, WIDPD, modified Untreated Patient Database; RMST, restricted mean

Table 2. Survival HRs for patients with age of TK2d symptom onset ≤12 years, estimated from Cox models using 50th-percentile matched-pair data from the ISE treated and ISE-MUPD groups

Model	HR (95% CI) for time from TK2d symptom onset to death	HR (95% CI) for time from treatment initiation to death
Cox proportional hazard model, match-pairs as strata variable, age of TK2d symptom onset as continuous covariate, with Firth correction	0.061 (0.006, 0.221); p<0.0001	0.134 (0.033, 0.362); p<0.0001
Cox proportional hazard model, match-pairs as strata variable, no covariate, with Firth correction	0.079 (0.016, 0.238); p<0.0001	0.127 (0.034, 0.340); p<0.0001
Marginal Cox model with age of TK2d symptom onset as strata variable	0.061 (0.019, 0.190); p<0.0001	0.052 (0.015, 0.179); p<0.0001

78 matched pairs were included in the analyses (deaths: ISE treated, n=3: ISE-MUPD, n=40), of which 33 and 30 informative pairs

Safety and tolerability

 In the pooled safety population (MT-1621-101, TK0102, MT-1621-107; n=50 with age of TK2d symptom onset ≤12 years), two patients (4.0%) experienced treatment-emergent adverse events (TEAEs) leading to treatment discontinuation (Table 3)

Table 3. Summary of TEAEs in the pooled safety population with age of TK2d symptom onset ≤12 years

Patients with TEAEs, n (%)	MT-1621-101 and TK0102 (n=39)	MT-1621-101, TK0102 and MT-1621-107 (n=50)
Patients with ≥1 TEAE	39 (100)	NC ^a
TEAE related to study drug	32 (82.1)	NC ^a
TEAE leading to study drug discontinuation	0 (0)	2 (4.0)
TEAE leading to dose reduction	9 (23.1)	10 (20.0)
Patients with ≥1 serious TEAE	23 (59.0)	NC ^a
Serious TEAE related to study drug	4 (10.3)	NC ^a

TEAEs reported in ≥20% of patients, by preferred term

Acute respiratory failure

Pneumonia

Diarrhoea	33 (84.6)	
Pyrexia	18 (46.2)	
COVID-19	17 (43.6)	
Upper respiratory tract infection	16 (41.0)	
Rhinorrhoea	15 (38.5)	
Vomiting	13 (33.3)	
Cough	11 (28.2)	NCa
Headache	11 (28.2)	INC-
Alanine aminotransferase increased	11 (28.2)	
Abdominal pain	10 (25.6)	
Gastroenteritis	9 (23.1)	
Aspartate aminotransferase increased	9 (23.1)	
Respiratory tract infection	8 (20.5)	
Blood creatine phosphokinase increased	8 (20.5)	
erious TEAEs reported in ≥10% of patients,	by preferred term	

Some safety outcomes were not collected in MT-1621-107. Data for any TEAE or serious TEAE leading to treat

5 (12.8)

5 (12.8)

NC^a

Conclusions and Outlook

In patients with an age of TK2d symptom onset ≤12 years, pyrimidine nucleos(t)ide therapy substantially decreased the risk of mortality by 87-95% and increased survival time

- Potential bias resulting from the use of an external comparator was addressed by utilizing multiple survival analyses, strict matching methodology, covariate adjustment and stratification

Treatment with pyrimidine nucleos(t)ides was generally well tolerated, with few TEAEs leading to treatment discontinuation in the overall ISS safety population

The observed improvement in survival with pyrimidine nucleos(t)ide therapy may have important implications for addressing the severe unmet need for patients living with TK2d

- Among patients with age of TK2d symptom onset ≤12 years and full safety data availability (MT-1621-107 not included; n=39):
- all patients had at least one TEAE, most commonly diarrhoea (33/39 [84.6%])
- 59.0% of patients (23/39) experienced at least one serious TEAE over the duration of their treatment, most of which were not considered
- TEAEs reported in ≥10% of patients are presented in Supplementary Table 1

sly presented at 2025 Muscular Dystrophy Association (MDA) Clinical & Scientific Conference

Acknowledgments: This study was funded by UCB. The authors acknowledge Tamsin Chambers PhD of PharmaGene Cambridge, UK, for writing and editorial assistance, which was funded by UCB, in accordance with Good Publication Practice 20: (GPP 2022) quidelines (https://www.ismpp.org/gpp-2022). The authors would like to thank Margarita Lens MSci CMPP of LICR f

References: 1, Berardo A, et al, J Neuromuscul Dis 2022;9:225-35, 2, Garone C, et al, J Med Genet 2018;55:515-2 3. Lopez-Gomez C, et al. EBioMedicine 2019:46:356–67. 4. Dominguez-Gonzalez C, et al. Orphanet J Rare Dis 2019:14:100. 5. de Barcelos IP, et al. Curr Opin Neurol 2019;32:715–21. 6. Lopez-Gomez C, et al. Ann Neurol 2017:81:641–52. 7. Tsurada L, et al. Neuromuscul Disord 2020:03:5139. 8. Lopez-Gomez C, et al. EBioMedicine 2019;46:556–67. 9. Ramon J, et al.

Disclosures: Caterina Garone serves on an advisory board of UCR Cristina Dominguez-González serves on an advisory board of Disclosures Calerina Carlon is ervice on an absorber post of a Cut. Surfath and Conference are visual service on an absorber post of a Cut. Surfath and Conference are visual service on an absorber post of the Clip. Its received froming from U.E.D or medical conference are medical service on an absorber post from Inc.D for research projects related to Ti2d. Richard Masa has count funding from the Clip for research projects related to Ti2d. Richard Masa has counted from the Clip research projects related to Ti2d. Richard Masa has counted from the Clip research with North American Micropartial Disease. Advanced Research Company and U.S. and Richard Masa has counted from the Clip Richard Mass and Construction Director Co and the National Institutes of Health (NIH: U54 NS078059 and P01 HD32062). Michio Hirano is also on the scientific and medica dyisory boards of the Barth Syndrome Foundation and the United Mitochondrial Disease Foundation, and he is on the Resear Advisory Committee of the Muscular Distrophy Association. Columbia University Irving Medical Center (CUIMC) has a patent for below indeeded with a process of the process of the