Functional outcomes in patients with thymidine kinase 2 deficiency aged ≤12 years at symptom onset who received pyrimidine nucleos(t)ide therapy

16th European Paediatric Neurology Society (EPNS) Congress; Munich, Germany; 8-12 July 2025

Caterina Garone^{1,2*}, Cristina Domínguez-González^{3,45}, Richard Haas^{6,7}, Carmen Paradas^{8,9}, Fernando Scaglia^{10,11,12}, Cynthia Beller^{1,3}, Carl Chiang^{1,3}, Anny-Odile Colson^{1,4}, Susan VanMeter^{1,3}, Michio Hirano^{1,5} 1-Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Italy; *Neuromuscular Diseases Unit, Neurology Department, Hospital University of Bologna, Italy; *Neuromuscular Diseases University Only Neurology Department, Hospital University "Research Institute Hospital 12 de Octubre limas 12], Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research on Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research Name Diseases (CIBERER), Instituto de Salut Carlos III, Madrid, Spain, "Centre for Biomedica Network Research Name Diseases (CIBERER), Instituto de Salut Carlos III, National Name Diseases (CIBERER), Instituto de Salut Carlos III, National Name Diseases (CIBERER), Instituto de Salut Carlos III, National Name Diseases (CIBERER), Instituto de Salut Carlos III, National Name Diseases (CIBERER), Instituto de Salut Carlos III, National Name Diseases (CIBERER), Instituto de Salut Carlos III, National National Name Diseases (CIBERER), Instituto de Salut Carlos III, National Nati Consejo Superior de Investigaciones Cientificas, University aciones Cientificas, University of Seville, Seville, Spain, "Center for Biomedical Network Research on Neurodegenerative Diseases (CiBERNED), Instituto de Salud Carlos III, Madrid, Spain, "Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA, "Espain College of Medicine, Houston, TX, USA, "Spain, "Or College of Medicine, Houston, TX, USA, "Interest Control of Medicine, Houston, TX, USA, "Spain, "Or College of Medicin Joint Centre for Medical Genetics, Prince of Wales Hospital, Shatin, Hong Kong SAR, China; "IUCB, Morrisville, NC, USA; "IUCB, Colombes, France; "The H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA *Presenting author: Caterina Garone (caterina.garone@unibo.it)

Please use this QR code to accer download a PDF of this poste

In patients with an age of TK2d symptom onset ≤12 years,

treatment with pyrimidine nucleos(t)ides resulted in a positive

was reduced and three-quarters of patients regained previously

17% of patients discontinued use of ventilatory support after

Treatment with pyrimidine nucleos(t)ides was generally well

Considering the relentlessly progressive nature of TK2d, the

stabilization or improvement of functional outcomes seen

Table 3. Summary of TEAEs in the pooled safety population with age of

is clinically important for addressing the severe unmet need for

tolerated, with few TEAEs leading to treatment discontinuation in

treatment initiation than before treatment initiation

Introduction

- Thymidine kinase 2 deficiency (TK2d) is an ultra-rare, autosomal recessive. mitochondrial disease associated with progressive, life-threatening proximal
- Pathogenic variants of the thymidine kinase 2 gene (TK2) result in mitochondrial DNA (mtDNA) depletion and/or multiple mtDNA deletions3
- Patients experience proximal muscle weakness and respiratory insufficiency. often losing the ability to walk, eat and breathe independently. Given the progressive nature of TK2d, there is typically no spontaneous recovery of lost
- · There are no approved treatments for TK2d, with current management across the world focused on supportive care. This may include use of ventilatory support and feeding tubes to assist with daily living2.5
- . Doxecitine and doxribtimine is a pyrimidine nucleoside therapy containing
- deoxycytidine (dC) and deoxythymidine (dT) currently in development for use in TK2d Dovecitine and dovribtimine targets the underlying disease nathology of TK2d.
- by utilizing residual thymidine kinase 2 activity in the mitochondria, as well as thymidine kinase 1 and dC kinase in the cytosol, to increase mtDNA quantity that supports increased energy metabolism in cells⁶⁻⁹
- The age of TK2d symptom onset varies widely; however, patients with earlier symptom onset typically tend to experience more rapid disease progression^{1,2}
- Using a threshold of ≤12 years versus >12 years for the age of TK2d symptom onset is largely considered a clinically meaningful approach to disease categorization^{1,2}

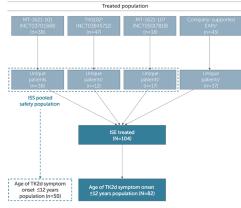
• To assess functional outcomes and safety in pediatric and adult patients with an age of TK2d symptom onset <12 years who received pyrimidine nucleos(t)ide therapy

- The efficacy and safety of pyrimidine nucleos(t)ide therapy were assessed in the Integrated Summary of Efficacy (ISE) and Safety (ISS)
- . Data from patients treated with pyrimidine nucleos(t)ides were pooled from retrospective (MT-1621-101 [NCT03701568], MT-1621-107 [NCT05017818]) and prospective (TK0102 [NCT03845712]) sources and company-supported expanded access programs (EAPs) to form the ISE treated group (Figure 1)
- The ISS pooled safety population included patients from MT-1621-101, TK0102 and
- · Subgroups were stratified by age of TK2d symptom onset categories; here, we report data from patients with symptom onset ≤12 years of age

Patient population

- Inclusion and exclusion criteria were specific to each source study
- The main eligibility criteria for treated patients were confirmed biallelic pathogenic TK2 variants, absence of other genetic disease or polygenic disease, and treatment with nucleos(t)ides for TK2d (non-good manufacturing practice [GMP]-grade deoxycytidine monophosphate/deoxythymidine monophosphate, non-GMP-grade dC/dT or doxecitine and doxribtimine [GMP-grade dC/dTI)
- Available medical records or, at a minimum, information pertaining to survival, were required for retrospective studies

Outcomes


- Functional outcomes were assessed before and after treatment initiation, including the attainment, loss or regain of key developmental motor milestones, ventilatory support use (invasive or non-invasive) and enteral feeding tube use
- Assessed motor milestones reflect those described by the World Health Organization:10 ability to hold head upright, sit upright, stand (assisted and unassisted), walk (assisted and unassisted), climb stairs (assisted and unassisted)
- Functional outcome data were not collected for treated patients in the EAPs • The primary outcome was survival (poster 365)
- . Safety outcomes, including treatment-emergent adverse events (TEAEs), were assessed in the ISS pooled safety population (Figure 1)
- Some safety outcomes were not collected in MT-1621-107

Results

Patient baseline characteristics and demographics

• In total, 82 patients with age of TK2d symptom onset ≤12 years were treated with

Figure 1. Study analysis populations

duplicates to obtain unique data. The untreated patient population used to assess survival in the ISE are no

*Data cutoff date: 15 March 2024. *Data cutoff date: 1 March 2024. *Individuals who participated in multiple studies are only counted once, although their data across studies are included

EAPs, expanded access programs; ISE, Integrated Summary of Efficacy; ISS, Integrated Summary of Safety

Table 1. Baseline demographics and characteristics of patients with age of TK2d symptom onset <12 years

Baseline demographics and characteristics	ISE treated (N=82)
Sex, n (%)	
Male	46 (56.1)
Female	36 (43.9)
Race, an (%)	
White	67 (81.7)
Other	11 (13.4)
Not reported	4 (4.9)
Ethnicity, n (%)	
Hispanic or Latino	30 (36.6)
Not Hispanic or Latino	41 (50.0)
Not reported	11 (13.4)
Geographic region of residence, an (%)	
Europe	27 (32.9)
Rest of world	55 (67.1)
Not reported	O (O)
Age of TK2d symptom onset, years	
Median (range)	1.50 (0.01-11.67)
Q1, Q3	1.08, 2.41
Age at first treatment (any treatment), years	
Median (range)	4.26 (0.69-35.52)
Q1, Q3	2.11, 10.49

*Owing to the ultra-rare nature of TK2d and the small number of patients, some details relating to race and geographic region of residence were grouped for reporting purposes to minimize risk ISE, Integrated Summary of Efficacy; Q, quartile; TK2d, thymidine kinase 2 deficiency.

pyrimidine nucleos(t)ide therapy (Table 1)

- There were more male (56.1%) than female patients (43.9%)
- Most patients were White (81.7%), 32.9% resided in Europe and 67.1% were from the
- Most patients had an age of TK2d symptom onset ≤2 years (56/82 [68.3%])
- Median (quartile [Q]1, Q3) age of symptom onset was 1.50 (1.08, 2.41) years
- . Median (Q1, Q3) age at first treatment was 4.26 (2.11, 10.49) years and duration of treatment was 54.8 (15.2, 78.4) months

Developmental motor milestones

- Of patients with developmental motor milestone data collected, 49/52 (94.2%) achieved ≥1 milestone before treatment initiation (missing data, n=30)
- Before treatment initiation, in patients who had initially achieved >1 motor milestone 83.7% of patients (41/49) lost ≥1 motor milestone and 40.8% of patients (20/49) lost ≥4 motor milestones (Figure 2A)
- After treatment initiation, 21.7% of patients (10/46) lost ≥1 motor milestone; only 2.2% of patients (1/46) lost ≥4 motor milestones (Figure 2A)
- Before treatment initiation, only 4.9% of patients (2/41) regained ≥1 previously lost motor milestone (Figure 2B); the ability to stand assisted and to run were both regained by 1 patient each
- After treatment initiation, 75.0% of patients (30/40) regained ≥1 previously lost motor milestone, and 22.5% (9/40) regained ≥4 previously lost motor milestones (Figure 2B)

Ventilatory and enteral feeding tube support

- Before treatment initiation, 31/82 patients (37.8%) were using ventilatory support. (Table 2), most commonly non-invasive bilevel or continuous positive airway pressure (20/31 [64 5%])
- Of these patients, 5/31 (16.1%) discontinued support after treatment initiation and an additional 5/31 patients (16.1%) reduced their hours of use
- After starting treatment, 4/22 patients (18,2%) initiated ventilatory support, one of
- Before treatment initiation, 20/82 patients (24.4%) had a feeding tube inserted (Table 2). One patient later had their feeding tube removed, leaving 19/82 patients (23.2%) using enteral feeding support at treatment initiation
- Of these patients, 2/19 (10.5%) discontinued feeding support after treatment initiation · After starting treatment, 4/33 patients (12.1%) had a feeding tube inserted, two of whom later discontinued enteral feeding support
- Before treatment initiation, the most common reason for enteral feeding tube insertion was to manage dysphagia (17/20 [85.0%]). After treatment initiation, the most common reason for enteral feeding tube insertion was for supplemental oral intake (3/4 [75.0%])

Table 2. Summary of use of ventilatory and enteral feeding tube support before and after treatment initiation in patients with age of TK2d symptom onset <12 years (N=82)

	Before treatment initiation	After treatment initiation	
Summary of ventilatory support			
Initiated ventilatory support, n/N (%)			
Discontinued ventilatory support, n/N (%)			
Hours of ventilatory support per day (last observation)			
n			
Median (range)			
Q1, Q3			
No ventilatory support data collected, n (%)			
Summary of enteral feeding tube support			
Feeding tube inserted, n/N (%)	20/82 (24.4)		

data collected, n (%) N is patients with available data not using support before treatment start who were at risk of initiating support. 'N is patients using support at any time after treatment start who were at risk of discontinuing support Q, quartile; TK2d, thymidine kinase 2 deficiency

Safety and tolerability

Feeding tube removed, n/N (%)

No enteral feeding tube support

- In the pooled safety population (MT-1621-101, TK0102, MT-1621-107; n=50 with age of TK2d symptom onset <12 years), two patients (4.0%) experienced TEAEs leading to treatment discontinuation (Table 3)
- Among patients with age of TK2d symptom onset ≤12 years and full safety data availability (MT-1621-107 not included; n=39):
- all patients had at least one TEAE, most commonly diarrhoea (33/39 [84.6%])
- 59.0% of patients (23/39) experienced at least one serious TEAE over the duration of their treatment, most of which were not considered treatment-related TEAEs reported in ≥10% of patients are presented in Supplementary Table 1

TK2d symptom onset ≤12 years MT-1621-101. MT-1621-101

the overall ISS safety population

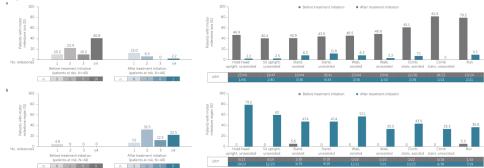
patients living with TK2d

Patients with TEAEs, n (%)

Conclusions and Outlook

Faderits with FEALS, II (76)	(- 70)	MT-1621-107
	(n=39)	(n=50)
Patients with ≥1 TEAE	39 (100)	NC ^a
TEAE related to study drug	32 (82.1)	NC ^a
TEAE leading to study drug discontinuation	0 (0)	2 (4.0)
TEAE leading to dose reduction	9 (23.1)	10 (20.0)
Patients with ≥1 serious TEAE	23 (59.0)	NC ^a
Serious TEAE related to study drug	4 (10.3)	NC ^a
TEAEs reported in ≥20% of patients, by prefe	rred term	
Diarrhoea	33 (84.6)	
Pyrexia	18 (46.2)	
COVID-19	17 (43.6)	
Upper respiratory tract infection	16 (41.0)	
Rhinorrhoea	15 (38.5)	
Vomiting	13 (33.3)	
Cough	11 (28.2)	NC ^a
Headache	11 (28.2)	INC-
Alanine aminotransferase increased	11 (28.2)	
Abdominal pain	10 (25.6)	
Gastroenteritis	9 (23.1)	

Respiratory tract infection Blood creatine phosphokinase increased Serious TEAEs reported in ≥10% of patients, by preferred term


Aspartate aminotransferase increased

Femur fracture

Some safety outcomes were not collected in MT-1621-107. Data for any TEAE or serious TEAE leading to treatmen discontinuation interruption or dose reduction were collected

NC, not calculable; TEAE, treatment-emergent adverse event; TK2d, thymidine kinase 2 deficiency.

Figure 2. Developmental motor milestone (A) loss and (B) regain before and after treatment initiation in patients with age of TK2d symptom onset ≤12 years (N=82)

treatment initiation had missing data or were not at risk for motor milestone regain, so are not included in the graph N is the number of patients at risk for loss or regain of each individual motor milestone