

Response to rozanolixizumab in patients with generalized myasthenia gravis: Final pooled analysis of MycarinG and open-label extension studies

Tuan Vu¹, Carlo Antozzi², Julian Grosskreutz³, Ali A. Habib⁴, Sabrina Sacconi⁵, Kimiaki Utsugisawa⁶, John Vissing⁷, Fiona Grimson⁸, Thaïs Tarancón⁹, Vera Bril¹⁰

¹Department of Neurology, University of South Florida Morsani College of Medicine, Tampa, FL, USA; ²Neuroimmunology and Muscle Pathology Unit, Multiple Sclerosis Center, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico, Istituto Nazionale Neurologico Carlo Besta, Milan, Italy; ³Precision Neurology of Neuromuscular Diseases, Department of Neurology, University of Lübeck, Lübeck, Germany; ⁴MDA ALS & Neuromuscular Center, Department of Neurology, University of California, Irvine, Orange, CA, USA; ⁵Université Côte d'Azur, Peripheral Nervous System & Muscle Department, Pasteur 2 Hospital, Centre Hospitalier Universitaire de Nice, Nice, France; ⁶Department of Neurology, Hanamaki General Hospital, Hanamaki, Japan; ⁷Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; ⁸UCB, Slough, UK; ⁹UCB, Madrid, Spain; ¹⁰Ellen and Martin Prosserman Centre for Neuromuscular Diseases, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada

AANEM & MGFA Scientific Session, San Francisco, CA, USA; October 29–November 1, 2025

Introduction

- Rozanolixizumab is a humanized IgG4 mAb FcRn blocker approved for the treatment of adults with anti-AChR Ab+ or anti-MuSK Ab+ gMG¹
- In the double-blind, placebo-controlled, Phase 3 MycarinG study (MG0003/NCT03971422), one 6-week cycle of rozanolixizumab led to clinically meaningful and statistically significant improvements in MG-specific outcomes versus placebo and was generally well tolerated in adults with gMG²
- After MycarinG, patients could enroll in the now completed OLE studies: MG0004 (NCT04124965) then MG0007 (NCT04650854), or MG0007 directly
- Here, we evaluate the response to repeated rozanolixizumab cycles in patients with gMG using different MG-ADL and QMG responder thresholds

Methods

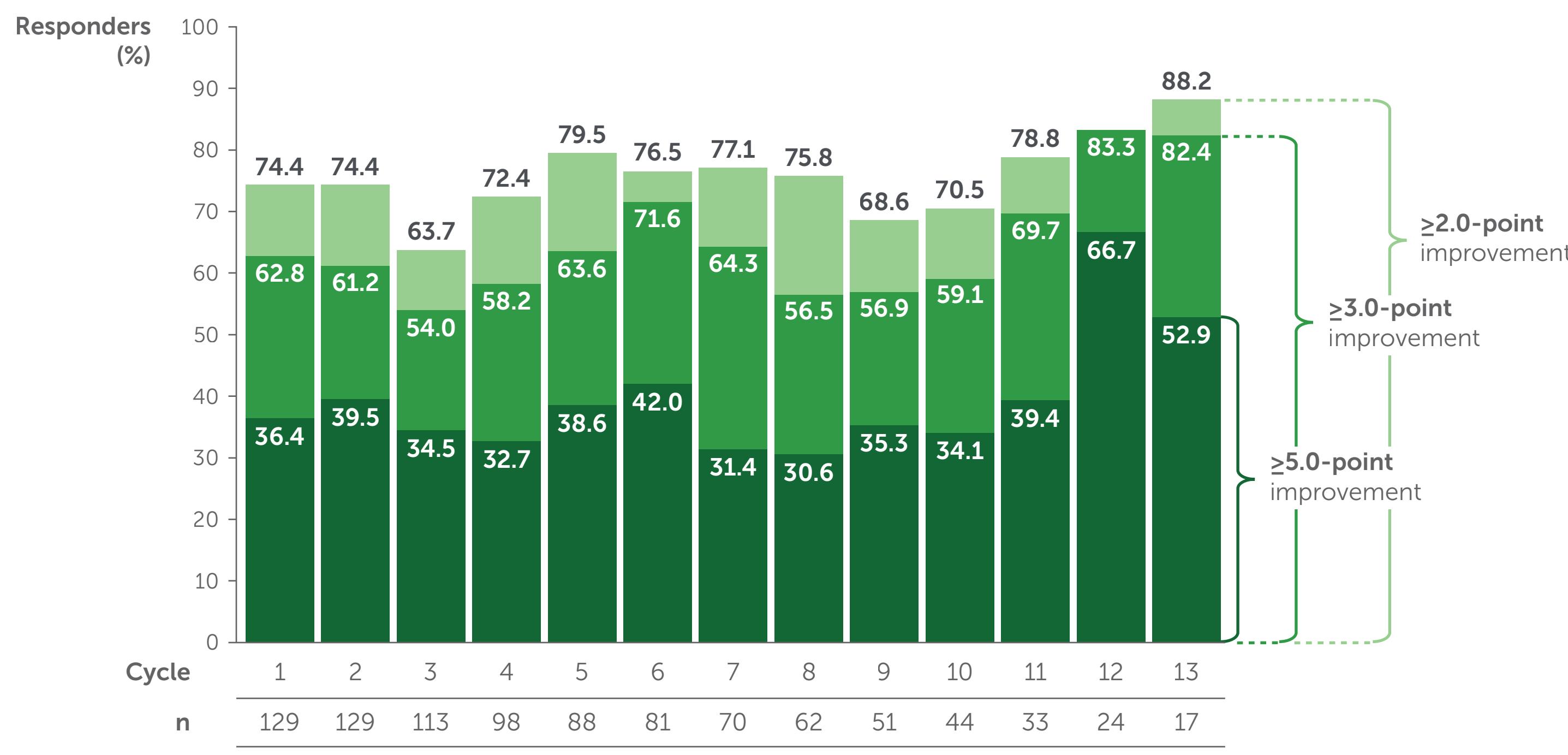
- In MycarinG, patients were randomized to receive subcutaneous infusions of rozanolixizumab 7 mg/kg, 10 mg/kg or placebo once weekly for 6 weeks
- In MG0004, patients received once-weekly rozanolixizumab 7 mg/kg or 10 mg/kg for up to 52 weeks
- In MG0007, following an initial 6-week rozanolixizumab 7 mg/kg or 10 mg/kg cycle, subsequent cycles were administered upon symptom worsening at the investigator's discretion
- Efficacy data were pooled for patients with ≥ 2 symptom-driven rozanolixizumab treatment cycles across MycarinG, MG0004 (first 6 weeks) and MG0007; up to 13 cycles are reported
- Safety data were pooled for patients receiving ≥ 1 rozanolixizumab treatment cycle with an up to 8-week follow-up period across MycarinG and MG0007

- MG-ADL response was prespecified as a ≥ 2.0 -point improvement in MG-ADL score without rescue therapy at Day 43 in each cycle; ≥ 3.0 -point and ≥ 5.0 -point thresholds were assessed *post hoc*
- QMG response was prespecified as a ≥ 3.0 -point improvement in QMG score without rescue therapy at Day 43 in each cycle; a ≥ 5.0 -point threshold was assessed *post hoc*
- Safety outcomes included the incidence of TEAEs

Results

- Overall, 129 patients received ≥ 2 symptom-driven cycles of rozanolixizumab
- Baseline demographics and disease characteristics were indicative of a broad population of patients with gMG (Table 1)
- Clinically meaningful (≥ 2.0 -point) improvement in MG-ADL score was achieved by $\geq 63.7\%$ of patients across Cycles 1–13 (Figure 1)
 - More stringent ≥ 3.0 -point and ≥ 5.0 -point improvements were achieved by $\geq 54.0\%$ and $\geq 30.6\%$ of patients, respectively, across all cycles up to Cycle 13
- Clinically meaningful (≥ 3.0 -point) improvement in QMG score was achieved by $\geq 60.6\%$ of patients across Cycles 1–13 (Figure 2)
 - A ≥ 5.0 -point improvement was achieved by $\geq 40.2\%$ of patients across all cycles up to Cycle 13
- At the group level, a mean improvement in MG-ADL score of approximately 3.0 points from baseline was maintained over 130 weeks of repeated rozanolixizumab treatment cycles (Figure 3)
- Over a total of 1,094 cycles, 93.1% (n=175/188) of patients experienced a TEAE; most were mild or moderate
 - The most common TEAEs were headache (50.0%), diarrhea (33.5%), COVID-19 (21.8%) and pyrexia (20.7%)

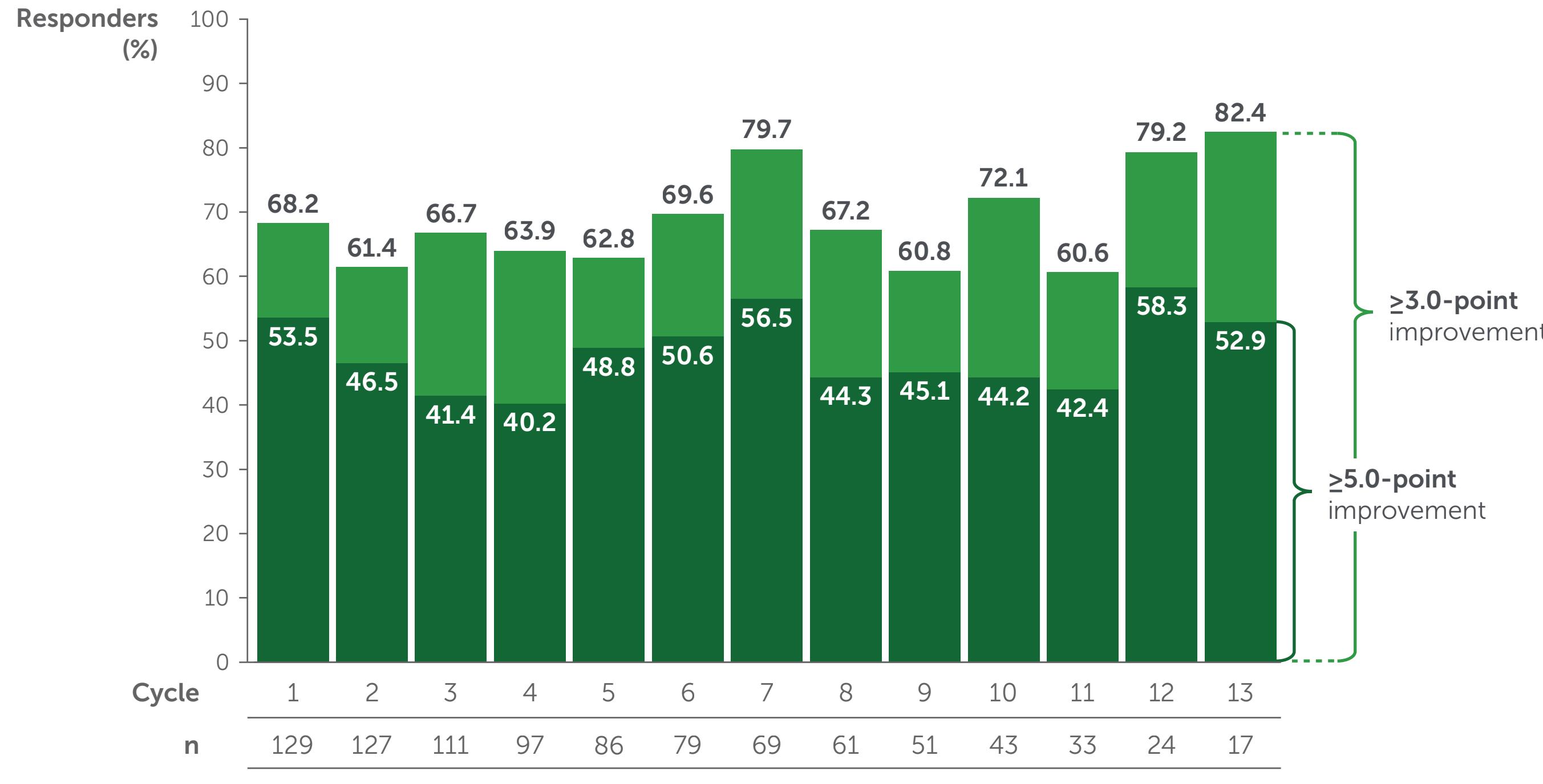
Summary and conclusions

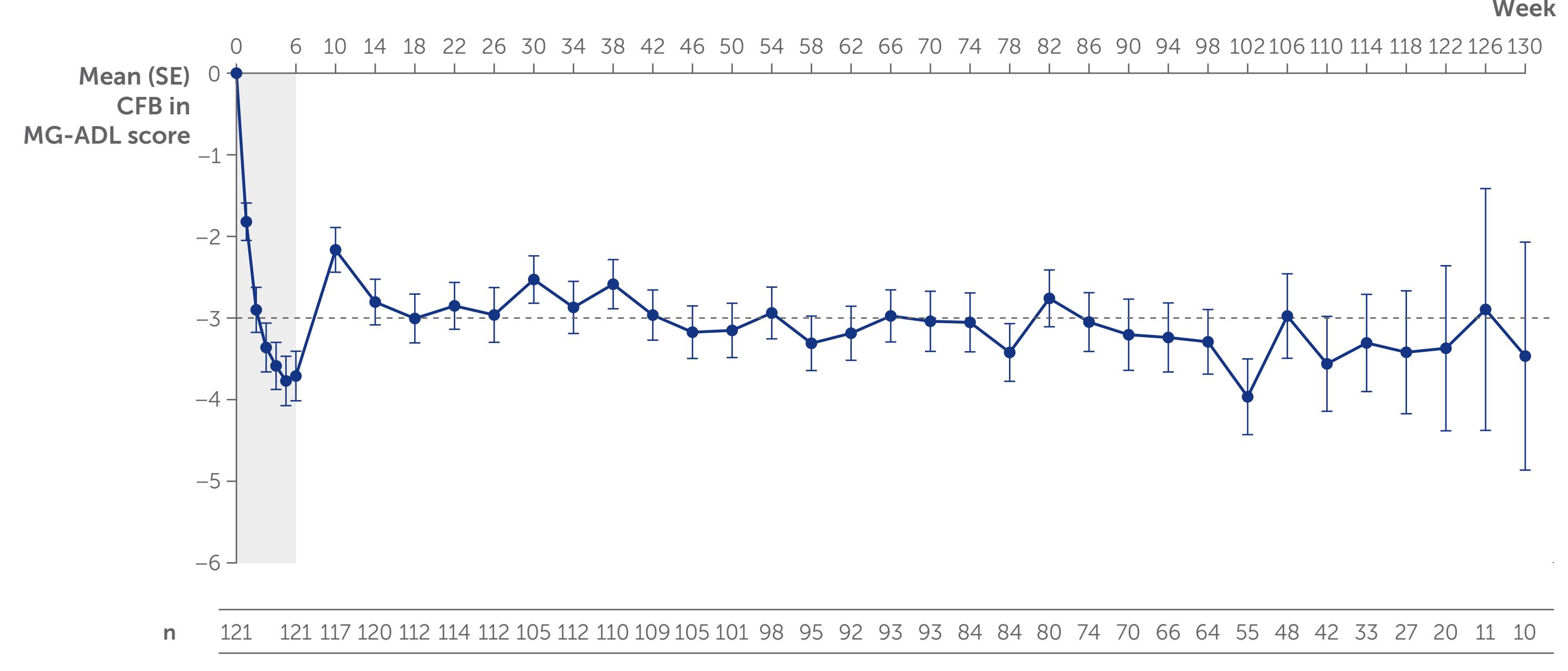

Across Cycles 1–13, high MG-ADL responder rates were observed; in each cycle, more than 63% of patients achieved a ≥ 2.0 -point improvement in MG-ADL score, and over 30% achieved a ≥ 5.0 -point improvement

Similar improvements were observed in QMG score – more than 60% of patients achieved a ≥ 3.0 -point improvement, and over 40% achieved a ≥ 5.0 -point improvement in each cycle

At the group level, long-term efficacy was maintained over 130 weeks of cyclic rozanolixizumab treatment

Clinically meaningful improvements in MG-specific outcomes were maintained over time, supporting a consistent response to rozanolixizumab across repeated treatment cycles


Figure 1 Rozanolixizumab demonstrated efficacy across 13 cycles using the prespecified and more stringent MG-ADL responder thresholds


Table 1 Baseline demographics and disease characteristics were indicative of a broad population of patients with gMG

RLZ total (N=129)
Age, years, mean (SD)
50.9 (16.3)
Sex, female, n (%)
77 (59.7)
Thymectomy, yes, n (%)
55 (42.6)
Anti-AChR Ab+, n (%)
117 (90.7)
Anti-MuSK Ab+, n (%)
12 (9.3)
MG-ADL score at baseline, mean (SD)
8.7 (3.4)
MG-ADL score, n (%)
<5 13 (10.1)
≥5 116 (89.9)
QMG score at baseline, mean (SD)
16.0 (3.8)
II 52 (40.3)
III 72 (55.8)
IV 5 (3.9)
Duration of disease from diagnosis, years, mean (SD)
8.1 (8.5)

Figure 2 Rozanolixizumab demonstrated efficacy across 13 cycles using the prespecified and more stringent QMG responder thresholds

Figure 3 Over 130 weeks of repeated rozanolixizumab treatment cycles, a mean improvement in MG-ADL score of approximately 3.0 points from baseline was maintained

Includes patients in MycarinG and MG0007 who received ≥ 2 consecutive symptom-driven rozanolixizumab treatment cycles. Data at Weeks 0–6 represent observed MG-ADL scores in the Cycle 1 treatment period. After this, patients followed their own cadence of rozanolixizumab treatment cycles, with average monthly (28-day) MG-ADL scores calculated for each patient. The group-level average was calculated using data from all patients with at least one MG-ADL measurement at that time period, whether on treatment or not. If patients had multiple MG-ADL measurements during the period, their average MG-ADL score over the measurements was used.

Abbreviations: Ab+, antibody positive; AChR, acetylcholine receptor; CFB, change from baseline; COVID-19, coronavirus disease 2019; FcRn, neonatal fragment crystallizable receptor; gMG, generalized myasthenia gravis; IgG4, immunoglobulin G4; mAb, monoclonal antibody; MG, myasthenia gravis; MG-ADL, Myasthenia Gravis Activities of Daily Living; MGFA, Myasthenia Gravis Foundation of America; MuSK, muscle-specific tyrosine kinase; QMG, open-label extension; OMGS, Quantitative Myasthenia Gravis; RLZ, rozanolixizumab; SD, standard deviation; SE, standard error; TEAE, treatment-emergent adverse event.

Acknowledgments: This study was funded by UCB. The authors acknowledge Annabel Dimmock, PhD, of Oigiv Health, London, UK, for editorial assistance, which was funded by UCB. The authors thank Veronica Parkes, PhD, of UCB, Slough, UK, for publication and editorial support. The authors thank patients and their caregivers, in addition to the investigators and their teams who contributed to this study.

Author disclosures: Tuan Vu is the USF Site Principal Investigator for MG clinical trials sponsored by Alexion/AstraZeneca Rare Disease, Amgen, argenx, Cartesian Therapeutics, COUR Pharmaceuticals, Dianthus Therapeutics, Immunovant, Johnson & Johnson, NMD Pharma, Regeneron Pharmaceuticals and UCB, and has served as a speaker for Alexion/AstraZeneca Rare Disease, argenx, Dianthus Therapeutics and ImmunAbs.

Carlo Antozzi has received funding for congress and institutional Review Board participation from Alexion Pharmaceuticals, argenx, Biogen, Janssen Pharmaceuticals (now Johnson & Johnson) and UCB. Julian Grosskreutz has served as a Consultant for Alexion Pharmaceuticals, Biogen and UCB, and his institution has received research support from the Boris Canessa Foundation. Ali A. Habib has received research support and/or honoraria from Alexion/AstraZeneca Rare Disease, Amgen, Arcelex, argenx, Cabellita Bio, Cartesian Therapeutics, COUR Pharmaceuticals, Genentech/Roche, Grifols, Immunovant, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Kyvera, Merck, MGNet, NMD Pharma, Novartis, Regeneron Pharmaceuticals and UCB. Sabrina Sacconi has nothing to disclose. Kimiaki Utsugisawa has served as a paid Consultant for argenx, Chugai Pharmaceutical, HanAll Biopharma, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Mitsubishi Tanabe Pharma, UCB and Vieila Bio (now Amgen); he has received speaker honoraria from Alexion Pharmaceuticals, argenx, the Japan Blood Products Organization and UCB. John Vissing has been a Consultant on advisory boards for Amicus Therapeutics, Biogen, Edgewise Therapeutics, Fulcrum Therapeutics, Genethon, Horizon Therapeutics (now Amgen), Lupin, ML Biopharma, Novartis, Regeneron Pharmaceuticals, Roche, Sanofi Genzyme (now Sanofi) and Sarepta Therapeutics and UCB. He has received research and travel support and/or speaker honoraria from Alexion Pharmaceuticals, argenx, Biogen,

Edgewise Therapeutics, Fulcrum Therapeutics, Lupin, Sanofi Genzyme (now Sanofi) and UCB. He is a Principal Investigator in clinical trials for Alexion Pharmaceuticals, argenx, Amgen, Genethon, Horizon Therapeutics (now Amgen), Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), ML Biopharma, Novartis, Regeneron Pharmaceuticals, Roche, Sanofi Genzyme (now Sanofi) and UCB. Fiona Grimson and Thaïs Tarancón are employees and shareholders of UCB. Vera Bril is a Consultant for Alcea, Alexion Pharmaceuticals, Alnylam, argenx, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi, Takeda Pharmaceuticals and UCB. She has received research support from Alcea, Alexion Pharmaceuticals, argenx, Biogen, CSL, Grifols, Immunovant, Ionis, Janssen Pharmaceuticals (now Johnson & Johnson Innovative Medicines), Merck, Novartis, Octapharma, Pfizer, Powell Mansfield, Roche, Sanofi