

Fenfluramine in CDKL5 Deficiency Disorder: Primary Efficacy and Safety Results From a Phase 3, Randomized, Double-Blind, Placebo-Controlled Study

Nicola Specchio, MD, PhD, FRCP^{1,2}; Eric Marsh, MD, PhD^{3,4}; Orrin Devinsky, MD⁵; Angel Aledo-Serrano, MD, PhD⁶; Domenica Immacolata Battaglia, MD, PhD^{7,8}; Rajsekar Rajaraman, MD^{9,10}; Karen Keough, MD¹¹; Ryoko Honda¹²; Renzo Guerrini, MD, FRCP^{13,14}; Gia Melikishvili, MD¹⁵; Sam Amin, MRCPCH, MSc, PhD¹⁶; Amanda Jaksch¹⁷; Brian Moseley, MD¹⁸; Peter St. Wecker, PhD¹⁹; Brian Kilgallen, MSc¹⁸; Najla Dickson, MD¹⁸; Joseph Sullivan, MD²⁰

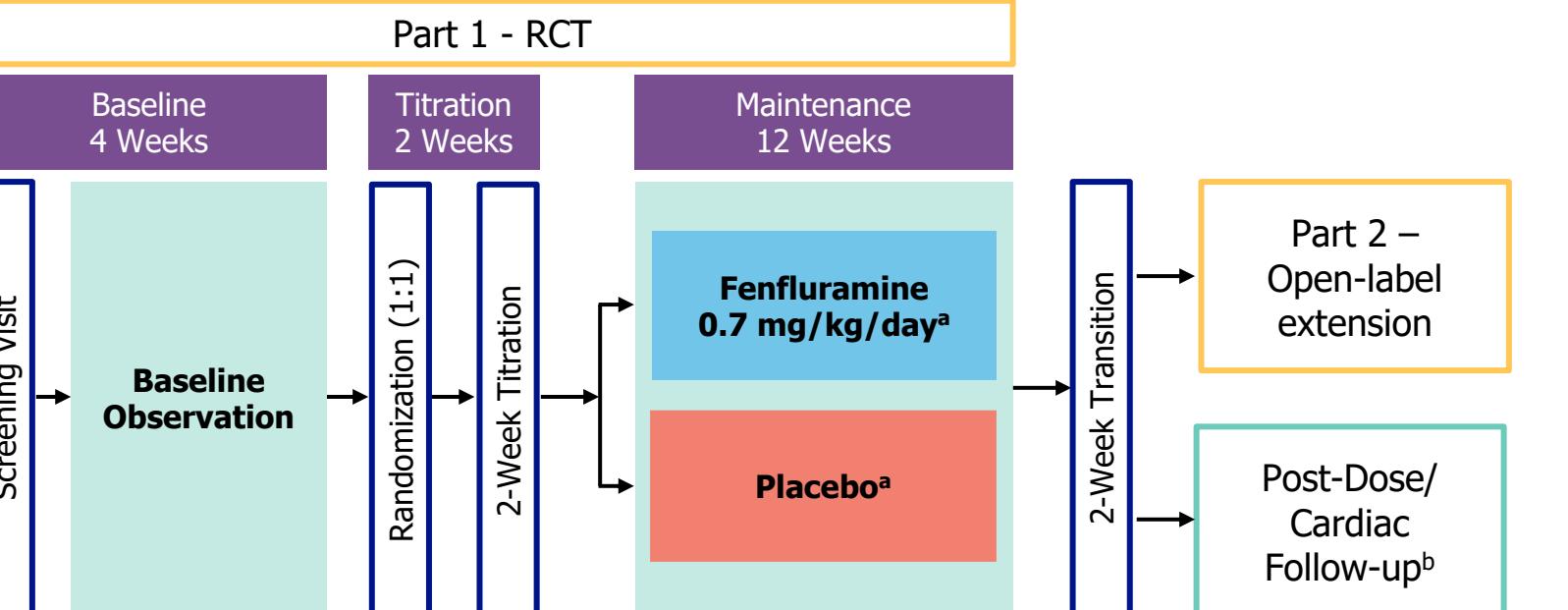
¹Bambino Gesù Children's Hospital, IRCCS, Member of European Reference Network (ERN) EpiCARE, Rome, Italy; ²Universitair Ziekenhuis Leuven, Belgium; ³Children's Hospital of Philadelphia, Philadelphia, PA, USA; ⁴Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ⁵NYU Comprehensive Epilepsy Center, NYU Langone Medical Center, New York, NY, USA; ⁶Neuroscience Institute, Vithas Málaga La Región Medical Hospital, Málaga, Spain; ⁷Trinitas Reumatismo Polimialgia, Universitario Asociado Gómez Ulla, IRCCS, Roma, Italy; ⁸Università Cattolica del Sacro Cuore, Roma, Italy; ⁹David Geffen School of Medicine, Los Angeles, CA, USA; ¹⁰ICL4 Matel Children's Hospital, Los Angeles, CA, USA; ¹¹Child Neurology and Consultants of Austin, Austin, TX, USA; ¹²NHO Nagasaki Medical Center, Omura, Nagasaki, Japan; ¹³Meyer Children's Hospital, IRCCS, Member of the ERN EpiCARE, Florence, Italy; ¹⁴University of Florence, Florence, Italy; ¹⁵MediClubGeorgia Medical Center, Thilisi, Georgia; ¹⁶University Hospitals Bristol and Weston, Bristol, United Kingdom; ¹⁷Patient caregiver, Denver, CO, USA; ¹⁸UCB, Morrisville, NC, USA; ¹⁹UCB, Emeryville, CA, USA; ²⁰Well Institute for Neurosciences and Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA

Background

- Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is an ultra-rare, drug-resistant, X-linked developmental and epileptic encephalopathy caused by *CDKL5* gene mutations^{1,2}
- CDD is associated with infantile-onset epilepsy and global developmental delay^{2,3}
- While the goal of antiseizure medication (ASM) treatment is to control seizures, seizure freedom is rare;⁴ effective and well-tolerated ASM options are limited⁵
- Fenfluramine, a multimodal serotonergic and sigma-1 receptor modulator approved in the US to treat seizures in patients (≥ 2 years old) with Dravet syndrome (DS) and Lennox-Gastaut syndrome (LGS)⁶, was safe and effective in an open-label, investigator-initiated, single-center trial in 6 patients with CDD (mean treatment duration of 5.3 months)⁷

Objective

- We report the primary results from the randomized placebo-controlled trial (RCT; NCT05064878) portion of an international, multicenter phase 3 study of fenfluramine in patients with CDD


Methods

- Key patient eligibility criteria included: age 1–35 years, confirmed or likely pathogenic *CDKL5* mutation, clinical CDD diagnosis with epilepsy onset in the first year of life, ≥ 4 countable motor seizures/week as reported by caregivers, treatment with ≥ 1 antiseizure treatment and ≤ 4 concomitant ASMs, not including rescue
- After a 4-week baseline observation period, patients were randomized 1:1 to receive fenfluramine 0.7 mg/kg/d (maximum of 26 mg/d) or placebo over a 2-week titration (T) period, followed by a 12-week maintenance (M) period (Figure 1)
- The primary efficacy endpoint was the percentage change from baseline in countable motor seizure frequency (CMSF) over the 14-wk T+M period vs placebo
- The mITT population comprised all patients who received ≥ 1 dose of study drug and for whom ≥ 1 week of post randomization seizure diary data was available
- Key secondary endpoints: achievement of a $\geq 50\%$ CMSF reduction from baseline during T+M vs placebo; percentage of patients with ratings of clinically meaningful improvement ('much improved' or 'very much improved') on Clinical Global Impression-Improvement (CGI-I) by investigators at the end of T+M; percentage change from baseline in monthly generalized tonic-clonic seizure (GTCS) frequency over T+M vs placebo
- Additional secondary endpoints: achievement of $\geq 25\%$, $\geq 75\%$, and 100% CMSF reduction from baseline during T+M; percentage of patients with ratings of clinically meaningful improvement on CGI-I by caregivers at end of T+M; percentage change from baseline in monthly frequency of all seizures during T+M; mean change from baseline in monthly frequency of CMS-free days during T+M
- Safety and tolerability were evaluated in the safety population (all randomized patients who received ≥ 1 dose of study drug)

Results

- A total of 87 patients were randomized and comprised the safety population (fenfluramine, n=42; placebo, n=45); of these, 3 (7.1%) patients in the fenfluramine group discontinued treatment due to adverse events (AEs) and 1 (2.2%) patient in the placebo group discontinued due to an AE before the end of the RCT
- Overall, 83 patients (38 and 44 in the fenfluramine and placebo groups, respectively) completed this RCT, all of whom intended to go onto Part 2/OLE

Figure 1. Study Design

^aAdded to existing standard of care. ^bCardiac follow-up visit conducted 6 months after last FFA dose in patients discontinuing the study or not continuing FFA after study completion.

^cPer protocol, patients could not be on >4 concomitant ASMs; two patients were on concomitant benzodiazepines for other indications.

^dASMs, antiseizure medications; CMSF, countable motor seizure frequency; SD, standard deviation.

^eValues per 28 days, median (range)

^fCMSF per 28 days, median (range)

^gOR: odds ratio and confidence intervals for the difference between fenfluramine and placebo were obtained via logistic regression.

^hNon-estimable due to placebo group having no patients with 100% reduction in CMSF.

ⁱCI, confidence interval; CMSF, countable motor seizure frequency; FFA, fenfluramine; mITT, modified intent-to-treat; T+M, titration+maintenance.

^jP values for the CGI-I rating comparisons were calculated with Fisher's exact test.

^kData missing for one patient.

^lCGI-I, Clinical Global Impression-Improvement; FFA, fenfluramine; mITT, modified intent-to-treat; T+M, titration+maintenance.

^mN: Served on scientific advisory boards for Avello, BioMarin, GW Pharma (now Jazz Pharmaceuticals), Marinus, Takeda, and UCB; received speaker honoraria from Biogen, Eisai, LivaNova, Sanofi, UCB; served as an investigator for Biogen, Marinus, Roche, and UCB.

ⁿDisclosures for all authors can be found in a supplementary slide at the QR code.

^oFor a copy of this poster and an accompanying plain language summary (PLS), use your smartphone to scan the QR code or contact UCBCare[®].

^pPhone: +1-844-599-CARE (2273)

^qEmail: UCBCare@ucb.com

^rAmerican Epilepsy Society 79th Annual Meeting

^sAtlanta, GA, USA | December 5–9, 2025

^tPoster 2.429

^uPoster 2.429

^vPoster 2.429

^wPoster 2.429

^xPoster 2.429

^yPoster 2.429

^zPoster 2.429

^{aa}Poster 2.429

^{bb}Poster 2.429

^{cc}Poster 2.429

^{dd}Poster 2.429

^{ee}Poster 2.429

^{ff}Poster 2.429

^{gg}Poster 2.429

^{hh}Poster 2.429

ⁱⁱPoster 2.429

^{jj}Poster 2.429

^{kk}Poster 2.429

^{ll}Poster 2.429

^{mm}Poster 2.429

ⁿⁿPoster 2.429

^{oo}Poster 2.429

^{pp}Poster 2.429

^{qq}Poster 2.429

^{rr}Poster 2.429

^{ss}Poster 2.429

^{tt}Poster 2.429

^{uu}Poster 2.429

^{vv}Poster 2.429

^{ww}Poster 2.429

^{xx}Poster 2.429

^{yy}Poster 2.429

^{zz}Poster 2.429

^{aa}Poster 2.429

^{bb}Poster 2.429

^{cc}Poster 2.429

^{dd}Poster 2.429

^{ee}Poster 2.429

^{ff}Poster 2.429

^{gg}Poster 2.429

^{hh}Poster 2.429

ⁱⁱPoster 2.429

^{jj}Poster 2.429

^{kk}Poster 2.429

^{ll}Poster 2.429

^{mm}Poster 2.429

ⁿⁿPoster 2.429

^{oo}Poster 2.429

^{pp}Poster 2.429

^{qq}Poster 2.429

^{rr}Poster 2.429

^{ss}Poster 2.429

^{tt}Poster 2.429

^{uu}Poster 2.429

^{vv}Poster 2.429

^{ww}Poster 2.429

^{xx}Poster 2.429

^{yy}Poster 2.429

^{zz}Poster 2.429

^{aa}Poster 2.429

^{bb}Poster 2.429

^{cc}Poster 2.429

^{dd}Poster 2.429

^{ee}Poster 2.429

^{ff}Poster 2.429

^{gg}Poster 2.429

^{hh}Poster 2.429

ⁱⁱPoster 2.429

^{jj}Poster 2.429

^{kk}Poster 2.429

^{ll}Poster 2.429

^{mm}Poster 2.429

ⁿⁿPoster 2.429

^{oo}Poster 2.429

^{pp}Poster 2.429

^{qq}Poster 2.429

^{rr}Poster 2.429

^{ss}Poster 2.429

^{tt}Poster 2.429

^{uu}Poster 2.429

^{vv}Poster 2.429

^{ww}Poster 2.429

^{xx}Poster 2.429

^{yy}Poster 2.429

^{zz}Poster 2.429

^{aa}Poster 2.429

^{bb}Poster 2.429